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Abstract
The dynamical Casimir effect for a massless scalar field in 1+1-dimensions
is studied numerically by solving a system of coupled first-order differential
equations. The number of scalar particles created from vacuum is given by the
solutions to this system which can be found by means of standard numerics.
The formalism already used in a former work is derived in detail and is applied
to resonant as well as off-resonant cavity oscillations.

PACS numbers: 11.10.−z, 42.50.Pq

1. Introduction

The possibility of creating photons out of vacuum fluctuations of the quantized electromagnetic
field in dynamical cavities, the so-called dynamical Casimir effect (see [1] for a review),
demonstrates the highly non-trivial nature of the quantum vacuum.

A scenario of particular interest are so-called vibrating cavities [2] where the distance
between two parallel (ideal) mirrors changes periodically in time. The occurrence of resonance
effects between the mechanical motion of the mirror and the quantum vacuum leading to (even
exponentially) increasing occupation numbers in the resonance modes makes this configuration
the most promising candidate for an experimental verification of this pure quantum effect.

Particle creation in one-dimensional vibrating cavities has been studied in numerous
works [3–11]. When considering small amplitude oscillations, analytical results can be
deduced showing that under resonance conditions the particle occupation numbers increase
quadratically in time. Particle creation due to off-resonant wall motions has been investigated
in, e.g., [8]. The evolution of the energy density in a one-dimensional cavity with one vibrating
wall has also been studied by many authors [12–18] demonstrating that the total energy inside
a resonantly vibrating cavity grows exponentially in time (see also [4]) while the total particle
number increases only quadratically. Thus a pumping of energy into higher frequency modes
takes place and particles of frequencies exceeding the mechanical frequency of the oscillating
mirror are created. The energy for this process is provided by the energy which has to be given
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to the system from outside to maintain the motion of the mirror against the radiation reaction
force [19–22]. The more realistic case of a three-dimensional cavity is studied in [22–29].
Field quantization inside cavities with non-perfect boundary conditions has been investigated
in, e.g., [30, 31] and corrections due to finite temperature effects are treated in [32–34]. The
question of how the quantum vacuum interacts with the (classical) dynamics of the cavity has
been addressed in [12, 35–37].

In this work, we present a formalism allowing for numerical investigation of the dynamical
Casimir effect for scalar particles in a one-dimensional cavity. (For related numerical work
see also [38–40].) We introduce a particular parametrization for the time evolution of the field
modes yielding a system of coupled first-order differential equations. The solutions to this
system determine the number of created particles and can be obtained by means of standard
numerics. We employ the formalism to investigate the creation of real massless scalar particles
in a resonantly as well as off-resonantly vibrating cavity and compare the numerical results
with analytical predictions. These results are complementary to those already presented in
[41].

With this formalism at hand the dynamical Casimir effect can be investigated fully
numerically making it possible to study a variety of scenarios where no analytical results
are known (large amplitude oscillations, arbitrary wall motions etc). Of special interest is
of course the realistic case of the electromagnetic field in a three-dimensional cavity. Being
easily extendable to arbitrary space dimensions the presented formalism can be used also in
this case. In particular it allows us to calculate numerically the TE-mode contribution [27]
to the photon creation taking the influence of the intermode coupling fully into account [43].
Hence the formalism can be used to cross-check analytical results also in this realistic case
which might be of importance for future experiments. Let us finally note that the tools (and
the numerical formalism presented here) used to study the dynamical Casimir effect can also
be employed to investigate graviton generation in braneworld cosmology [42].

2. Hamiltonian and equations of motion

We consider the Hamilton operator

Ĥ (t) = 1

2

∑
n

[
p̂2

n + �2
n(t)q̂

2
n

] − 1

2

∑
nm

Mnm(t)[q̂np̂m + p̂mq̂n] (1)

with

p̂n = ˙̂qn +
∑
m

q̂mMmn(t) and Mnm(t) =
∫

I (t)

dx φ̇n(t, x)φm(t, x) (2)

describing the dynamics of a massless real scalar field � = �(t, x) on a time-dependent
interval I (t) = [0, l(t)] in terms of the canonical operators q̂n and p̂n subject to the
usual equal-time commutation relations. The corresponding canonical variables qn and
pn are introduced via the expansion �(t, x) = ∑

n qn(t)φn(t, x) of the field and its
momentum �(t, x) = ∑

n pn(t)φn(t, x) in time-dependent (instantaneous) eigenfunctions
φn(t, x) satisfying the eigenvalue equation

−∂2
xφn(t, x) = �2

n(t)φn(t, x) (3)

on I (t) with time-dependent eigenvalues �2
n(t) [7]. The overdot denotes the derivative with

respect to time t and we are using units with h̄ = c = 1. The time-dependent so-called
coupling matrix Mnm arises due to the time-dependent boundary condition for the field at
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x = l(t) enforcing the eigenfunctions of −∂2
x to be time-dependent. We take the boundary

conditions at x = 0 and x = l(t) to be of the form

[a1� + a2∂x�]|x=0 = [b1� + b2∂x�]|x=l(t) = 0 ∀t (4)

with constants a1, a2, b1 and b2 ensuring that the set of eigenfunctions {φn(t, x)} is complete
and orthonormal for all times.

Adopting the Heisenberg picture, the equations of motion for q̂n(t) read [4, 7]

¨̂qn + �2
nq̂n +

∑
m

[Mmn − Mnm] ˙̂qm +
∑
m

[Ṁmn − Nnm]q̂m = 0 (5)

where Nnm = ∑
k MnkMmk . The structure of the intermode coupling mediated by the coupling

matrix Mnm depends on the particular kind of boundary conditions which decide on the specific
form of the instantaneous eigenfunctions φn(t, x). It is worth noting that the Hamiltonian (1)
does not correspond to the energy of the field because the coupling term does not contribute
to the total energy defined via the energy momentum tensor [7]. From the Hamiltonian (1)
and the equations of motion (5) we identify two external time dependences in the equations
which will lead to particle creation: (i) the time-dependent eigenfrequencies �n(t) and (ii) the
coupling matrix Mnm(t), called the squeezing and acceleration effect, respectively.

3. Vacuum and particle definition

Let us assume that the motion of the wall is switched on at t = 0 with l(t) following a
prescribed trajectory for a duration t1, ceases afterwards and is at rest again. Before and
after the motion the coupling matrix vanishes and the time evolution of the operator q̂n is
determined by the equation of an harmonic oscillator with constant frequency �0

n ≡ �n(t � 0)

and �1
n ≡ �n(t � t1), respectively1. The corresponding Hamilton operator describing the

quantized field for t � 0 and t � t1 can then be diagonalized by introducing time-independent
annihilation and creation operators

{
ân, â

†
n

}
, corresponding to the particle notion for t � 0,

and
{
Ân, Â

†
n

}
associated with the particle notion for t � t1 via2

t � 0: q̂n(t) = ân e−i�0
nt√

2�0
n

+ h.c., p̂n(t) = i

√
�0

n

2
â†

n ei�0
nt + h.c., (6)

t � t1: q̂n(t) = Ân e−i�1
n(t−t1)√

2�1
n

+ h.c., p̂n(t) = i

√
�1

n

2
Â†

n ei�1
n(t−t1) + h.c. (7)

The initial and final vacuum states |0, t � 0〉 and |0, t � t1〉, respectively, are introduced as
the ground states of the corresponding diagonal Hamilton operators:

Ĥ =
∑

n

{
�0

n

[
â
†
nân + 1/2

]
with ân|0, t � 0〉 = 0 for t � 0

�1
n

[
Â

†
nÂn + 1/2

]
with Ân|0, t � t1〉 = 0 for t � t1.

(8)

The set of initial-state operators
{
ân, â

†
n

}
is related to the set of final-state operators

{
Ân, Â

†
n

}
by a Bogoliubov transformation

Ân =
∑
m

[
Amn(t1)âm + B∗

mn(t1)â
†
m

]
, (9)

1 Here the final position l(t1) = l1 is assumed to be arbitrary. In the case of a vibrating cavity it is natural to consider
times t1 after which the dynamical wall has returned to its initial position.
2 We are assuming that �0

n �= 0 and �1
n �= 0 for all n.
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where Amn(t1) and Bmn(t1) satisfy the relations∑
m

[AmnA∗
mk − B∗

mnBmk] = δnk,
∑
m

[AmnB∗
mk − B∗

mnAmk] = 0. (10)

For t � t1 the particle number operator N̂n = Â
†
nÂn defined with respect to the final vacuum

state counts the number of physical particles. The number of particles created in a mode n
during the motion of the wall is given as the expectation value of N̂n with respect to the initial
vacuum state |0, t � 0〉:

Nn(t1) = 〈0, t � 0|N̂n|0, t � 0〉 =
∑
m

|Bmn(t1)|2. (11)

Accordingly, total particle number N(t1) and energy E(t1) of the motion induced radiation are
given by

N(t1) =
∑

n

Nn(t1), E(t1) =
∑

n

�1
nNn(t1). (12)

Both quantities are in general ill defined and therefore require appropriate regularization.
For a time dependence of the boundary l(t) which is not sufficiently smooth, i.e. it exhibits
discontinuities in its time-derivative appearing for instance when switching the motion on and
off instantaneously, one may expect that part of the particle creation is due to this discontinuity
in the velocity which may cause the excitation of modes of even arbitrary high frequencies.
Hence a (large) contribution to the predicted particle creation may be spurious and in the case
that arbitrary high frequency modes become excited the summations in (12) do not converge.
This can be avoided most easily by introducing a frequency cut-off which effectively smoothes
the dynamics l(t). When calculating the quantities (12) numerically we will make use of such
a frequency cut-off which is determined by the stability of the numerical results for single
modes, i.e. stability of the expectation value (11) with respect to the cut-off. Note that an
explicit frequency cut-off also accounts for imperfect (non-ideal) boundary conditions for high
frequency modes [7].

4. Time evolution

During the motion of the boundary some or even infinitely many modes may be coupled. For
t � 0 the operators q̂n(t) and p̂n(t) given by Û †q̂n(0)Û and Û †p̂n(0)Û , respectively, with
Û ≡ Û (t, 0) = T exp

(−i
∫ t

0 dt ′Ĥ (t ′)
)

and T denoting the time-ordering operator, can be

expanded in initial state operators ân, â
†
n and complex functions ε(m)

n (t):

q̂n(t � 0) = Û †q̂n(0)Û =
∑
m

âm√
2�0

m

ε(m)
n (t) + h.c., (13)

p̂n(t � 0) = Û †p̂n(0)Û =
∑
m

âm√
2�0

m

[
ε̇(m)
n (t) +

∑
k

Mkn(t)ε
(m)
k (t)

]
+ h.c. (14)

By using the Heisenberg equation ˙̂O(t) = i[Ĥ (t), Ô(t)]+ (∂Ô(t)/∂t)expl. it is straightforward
to show that the functions ε(m)

n (t) satisfy the same differential equation (5) as q̂n(t). Note that
insertion of equation (13) into the mode expansion for � leads to the decomposition of the
field used in, e.g., [4, 6, 8]. Through the formal expansion (13) we have reduced the problem
of finding the time evolution for the operator q̂n(t) to the problem of solving the system of
coupled second-order differential equations (5) for ε(m)

n (t). Demanding that equations (13)
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and (14) have to match with the corresponding expressions (6) at t = 0 leads to the initial
conditions

ε(m)
n (0) = δnm, ε̇(m)

n (0) = −i�0
nδnm − Mmn(0). (15)

Hence with Mmn(0) vanishing only if l̇(0) = 0 the initial condition ε̇(m)
n (0) is not simply

−i�0
nδnm when dealing with boundary motions l(t) which have a discontinuity in the velocity

at t = 0. Matching (7) with (13) and (14) at t = t1 one finds

Amn(t1) = 1

2

√
�1

n

�0
m

{
ε(m)
n (t1) +

i

�1
n

[
ε̇(m)
n (t1) +

∑
k

Mkn(t1)ε
(m)
k (t1)

]}
(16)

Bmn(t1) = 1

2

√
�1

n

�0
m

{
ε(m)
n (t1) − i

�1
n

[
ε̇(m)
n (t1) +

∑
k

Mkn(t1)ε
(m)
k (t1)

]}
. (17)

Starting with the initial vacuum |0, t � 0〉 the Bogoliubov transformation (9) has to become
trivial for t1 = 0, i.e. Âk = âk , implying the vacuum initial conditions

Amn(0) = δmn and Bmn(0) = 0 (18)

which are consistent with the initial conditions (15). The emergence of Mmn(0) in the initial
conditions (15) therefore guarantees to meet the vacuum initial conditions when the motion
of the boundary starts instantaneously with a nonzero velocity.

By introducing the auxiliary functions3

ξ (m)
n (t) = ε(m)

n (t) +
i

�0
n

[
ε̇(m)
n (t) +

∑
k

Mkn(t)ε
(m)
k (t)

]
, (19)

η(m)
n (t) = ε(m)

n (t) − i

�0
n

[
ε̇(m)
n (t) +

∑
k

Mkn(t)ε
(m)
k (t)

]
(20)

expressions (16) and (17) can be rewritten as

Amn(t1) = 1

2

√
�1

n

�0
m

[

+

n(t1)ξ
(m)
n (t1) + 
−

n (t1)η
(m)
n (t1)

]
, (21)

Bmn(t1) = 1

2

√
�1

n

�0
m

[

−

n (t1)ξ
(m)
n (t1) + 
+

n(t1)η
(m)
n (t1)

]
(22)

with


±
n (t) = 1

2

[
1 ± �0

n

�n(t)

]
. (23)

The quantity 
±
n (t1) is a measure for the deviation of the final state of the cavity, characterized

by the cavity length l(t1), with respect to its initial size l0. If at time t1 the cavity size
is equal to the initial size l0, for instance in the important case that t1 is a multiple of the
period of oscillations of the cavity, we have Bmn(t1) = (1/2)

√
�0

n/�0
mη(m)

n (t1) and therefore

Nn(t1) = (1/4)
∑

m

(
�0

n

/
�0

m

)∣∣η(m)
n (t1)

∣∣2
.

3 A derivation can be found in appendix A.
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The advantage of introducing the functions ξ (m)
n and η(m)

n is that they satisfy the following
system of first-order differential equations:

ξ̇ (m)
n = −i

[
a+

nnξ
(m)
n − a−

nnη
(m)
n

] −
∑

k

[
c−
nkξ

(m)
k + c+

nkη
(m)
k

]
, (24)

η̇(m)
n = −i

[
a−

nnξ
(m)
n − a+

nnη
(m)
n

] −
∑

k

[
c+
nkξ

(m)
k + c−

nkη
(m)
k

]
(25)

with

a±
nn(t) = �0

n

2

{
1 ±

[
�n(t)

�0
n

]2
}

and c±
nk(t) = 1

2

[
Mkn(t) ± �0

k

�0
n

Mnk(t)

]
. (26)

Besides the time-dependent frequency �n(t), only the coupling matrix Mkn(t) enters into this
system of coupled differential equations but neither Nnk(t) nor its time derivative Ṁkn(t). The
vacuum initial conditions (18) entail the initial conditions for the functions ξ (m)

n and η(m)
n to be

ξ (m)
n (0) = 2δmn η(m)

n (0) = 0. (27)

Let us stress that all derivations and equations shown so far, do not rely on particular symmetry
properties of the coupling matrix.

By means of equation (22) the number of particles created from vacuum during the
dynamics of the cavity as well as the associated energy may now be calculated from the
solutions ξ (m)

n and η(m)
n of the system of coupled first-order differential equations formed by

equations (24) and (25).
In order to obtain the numerical results presented in the next section we proceed in the

following way: a cut-off parameter kmax is introduced to make the system of differential
equations finite and suitable for a numerical treatment. The system of coupled differential
equations is then evolved numerically from t = 0 up to a final time tmax and the expectation
value (11) is calculated for several times in between. By doing so we interpret t1 as a continuous
variable such that equation (11) becomes a continuous function of time4. Consequently, the
stability of the numerical solutions with respect to the cut-off has to be ensured. In particular
kmax will be chosen such that the numerical results for the number of particles created in single
modes (11) are stable. Furthermore, the quality of the numerical results is assessed by testing
the relations Bogoliubov (10).

This procedure is of course not without problems when the expectation values are
evaluated also for times t1 at which l̇(t1) �= 0. The used particle definition requires then
a matching of the solutions to expressions corresponding to the static configuration with
l̇(t1) = 0, hence a discontinuity in the velocity appears which may cause spurious effects.
However the cut-off automatically ensures that possible spurious effects do not yield a divergent
total particle number (see also section 3). Indeed we will see that in the particular scenario of
interest—vibrating cavity—the influence of this matching problem is tiny and the numerical
results agree perfectly with analytical predictions.

5. Numerical results and discussion

In this section we consider a massless real scalar field subject to Dirichlet boundary conditions
at x = 0, l(t) and the much studied sinusoidal cavity motion

l(t) = l0[1 + ε sin(ωt)], ε � 1. (28)

4 Interpreting t1 as a continuous function of time one can of course derive a corresponding system of coupled
differential equations for Amn and Bmn (see appendix B).
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Figure 1. (a) Total number of particles produced in a cavity vibrating with (28) and ω = 2nπ

with n = 1.5, 2, 2.5 and 3. The small plot shows the results in the time range [0, 50] together
with the analytical prediction (solid line) N(t) = n(4n2 − 1)(10−3πt)2/12 of [6, 8] valid for
short times (10−3πt) � 1. (b) Numerical results for the created energy E(t) corresponding to (a)
together with the analytical prediction E(t) = (4n2 − 1)π sinh2(n10−3πt)/12 of [8] (solid line).
The results correspond to the largest cut-off parameters as given in figure 2.

The time-dependent frequency and coupling matrix are given by [7]

�n(t) = nπ

l(t)
, Mnm = l̇(t)

l(t)
(−1)n+m 2nm

m2 − n2
(29)

for n �= m and Mnn(t) = 0 with n,m = 1, 2, 3, . . .. The motion (28) whose absolute value of
the velocity is maximal at the beginning of the motion as well as for times at which the wall
returns to its initial position features the above described matching problem. In [41] we have
already studied particle creation caused by this motion for the main resonance case ω = 2�0

1
with the same formalism. We have found that for sufficiently small ε and appropriate kmax the
numerical results are in excellent agreement with analytical predictions of [3, 4]. Furthermore,
the influence of the initial discontinuity in the velocity of the motion (28) has been investigated
showing that it is negligible for ε � 1.

Here we want to concentrate on higher resonances ω = 2�0
n with n > 1 and off-resonant

frequencies (detuning). In the simulations we set l0 = 1 and ε = 0.001. For these parameters
it is shown in [41] that the numerical results agree very well with analytical predictions derived
under the assumption ε � 1. The numerical results are compared with analytical expressions
obtained in [6, 8]. Remarks about the numerics can be found in appendix C.

In figure 1(a), we show the numerical results for the total particle number in the time
range [0, 250] for resonant cavity frequencies ω = 2�0

n = 2nπ for n = 1.5, 2, 2.5 and 3
and the associated energy of the created quantum radiation is depicted in figure 1(b). The
corresponding particle spectra are shown in figure 2 for different cut-off parameters kmax to
demonstrate numerical stability of the results. Here stability of the numerical results means
that for the lowest modes k the value Nk(t) remains unchanged (within numerical precision)
under variation of kmax. The spectra confirm that no modes k = 2np with p = 1, 2, 3, . . . are
coupled (and therefore excited) as predicted by the coupling condition ω = ∣∣�0

k ±�0
l

∣∣ derived
and discussed in [23].

For short times επt = 10−3πt � 1, the numerical results are well described by the
analytical predictions of [6, 8]. The numerically calculated spectra for times t = 25 shown
in figure 2 are well fitted by the analytical expression Nk(t) = (2n − k)k(10−3πt)2/4
for k < 2n and Nk(t) = 0 otherwise [6], predicting a parabolic shape of the particle
spectrum. More quantitatively, for n = 2, for instance, the predicted values N1(t =
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Figure 2. Particle spectra for (a) ω = 3π , (b) ω = 4π , (c) ω = 5π and (d) ω = 6π corresponding
to the results shown in figure 1. The small plots compare the numerical results for Nk(t = 25)

with the analytical prediction Nk(t) = (2n − k)k(10−3πt)2/4 of [6] plotted for continuous values
of k (solid line).

25) = N3(t = 25) ∼ 4.63 × 10−3, N2(t = 25) = 6.17 × 10−3 agree well with the values
N1(t = 25) = 4.62 × 10−3, N2(t = 25) = 6.14 × 10−3 and N3(t = 25) = 4.59 × 10−3

obtained from the numerical simulations with kmax = 50. Consequently, the total number of
created particles is perfectly described by the expression N(t) = n(4n2 − 1)(10−3πt)2/12
[6, 8] as is demonstrated in the small plot in figure 1(a).

For the entire integration range [0, 250] we compare the numerical results for the
total energy associated with the created quantum radiation with the analytical expression
E(t) = (4n2 − 1)π sinh2(n10−3πt)/12 [8] predicting that the energy increases exponentially
with time (figure 1(b)). The numerical values and the analytical prediction agree very well for
n = 1.5 and 2. In the case of n = 2.5 and 3 we observe slight deviations towards the end of
the integration range. This is due to the numerical instabilities in the corresponding particle
spectra (cf figures 2(c) and (d)). The numerical values for Nk with k larger than some value
(k > 10 for n = 3, for instance) do not remain unchanged when varying kmax. Even Nk is
small for the higher frequencies compared to the values of Nk for the excited lowest modes
their contribution to the total energy is significant because of their high frequency. Hence
relatively small instabilities in Nk for larger k give rise to a non-stable (with respect to kmax)

result for the energy. In order to gain better agreement of the numerical results for the energy
for n = 2.5 and 3 with the analytical prediction a further increase of kmax is necessary.

We now consider the case of detuning ω = 2π(n + δn). In an off-resonant
vibrating one-dimensional cavity the total energy associated with the created particles
may increase exponentially E(t) = (π/12)(4n2 − 1) sinh2(n

√
1 − γ 2π10−3t)/(1 − γ 2)
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Figure 3. (a) Energy associated with the particles created in an off-resonantly vibrating one-
dimensional cavity. Numerical results are compared to the analytical predictions of [8]. The
numerical results are always shown for cut-off parameters kmax which ensure numerical stability.
(b) Period of particle number oscillations caused by detuning. The numerically obtained period
is compared with the analytical prediction t0 = 103/(n

√
γ 2 − 1) of [8]. (c) Maximal amplitude

N(t0/2) of the corresponding particle number oscillations fitted to the power law N(t0/2) ∝ (δn)α .

if γ < 1, quadratically E(t) = (π/3)(4n2 − 1)(nπ10−3t/2)2 if γ = 1 or oscillate
E(t) = (π/12)(4n2 − 1) sin2(n

√
γ 2 − 1π10−3t)/(γ 2 − 1) if γ > 1, depending on the

strength of detuning δn parametrized by γ = δn × 103/n [8]. In figure 3(a) results for
the total energy obtained in simulations with different off-resonant frequencies are shown
covering all three different possibilities for γ and compared to the analytical predictions.
In all cases the numerical results are very well described by the analytical expressions.
Figure 3(b) depicts the periods of the energy (and particle number) oscillations as obtained
from the simulations and compares them with the analytical prediction t0 = 103/(n

√
γ 2 − 1)

showing that both are in good agreement. The numerical values for the maximal amplitudes
N(t0/2) of the corresponding particle number oscillations are shown in figure 3(c) and fitted
to the power law N(t0/2) ∝ (δn)α with values of α as indicated in the figure.

The numerical results presented in this section are entirely in very good agreement with
the corresponding analytical predictions derived for small amplitude oscillations ε � 1
which demonstrates the reliability of the numerical simulations. However, a few critical
comments are in order. In our considerations above, the analytical expressions have been
treated as continuous functions of time. But strictly speaking, they are valid only for times
at which the moving wall has returned to its initial position. Moreover, in the numerical
simulations the expectation values have been calculated also for times at which the velocity
of the moving wall is nonzero (matching problem). Consequently one may expect that part
of the particle production is spurious and in particular if modes of arbitrarily high frequency
are excited, for instance due to the initial discontinuity in the velocity of the motion (28),
and kmax → ∞ the particle number diverges and the numerical results do not agree with
the analytical predictions. In the numerical simulations this is automatically avoided due
to the cut-off kmax. Nevertheless, working with a finite cut-off is well motivated because it
simulates imperfect boundary conditions for high frequency modes and, as a matter of course,
is a necessity for a numerical treatment. For the numerical results presented above, these
spurious effects are negligibly small and therefore the numerical results agree very well with
the analytical predictions. This is due to the fact that we restrict ourselves to small amplitudes
ε � 1 and hence to small velocities. Therefore the effect of the discontinuity in the velocity
of the boundary motion on the particle creation is expected to be small. This has been studied
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for the initial discontinuity in the velocity in [41] in detail demonstrating that the matching
problem becomes only important for larger ε. In appendix C we discuss the convergence of
the numerical results in comprehension with the numerical accuracy of the simulations for the
case ω = 3π more detailed.

6. Conclusion

A formalism allowing for numerical investigation of particle creation from vacuum in
dynamical cavities, i.e. the dynamical Casimir effect, has been presented. By introducing
a particular parametrization for the time-evolution of the field modes inside the dynamical
cavity, a system of coupled first-order linear differential equations has been derived. Physical
quantities such as the number of particles created during the dynamics of the cavity and
the associated energy are determined by the solutions to this system which can be found by
applying standard numerics.

In continuation of the work [41] we have studied the creation of massless scalar particles
due to resonant as well as off-resonant sinusoidal oscillations of one of the cavity walls.
The numerical results are entirely in agreement with the analytical predictions derived in
[6, 8] demonstrating that the numerical simulations are reliable and the method introduced is
appropriate to study the dynamical Casimir effect fully numerically.

Potential problems inherent in the method, in particular the matching problem due to
discontinuities in the velocity of the boundary motion yielding spurious contributions to the
total particle number, have been discussed. It has been shown that this effect is negligibly
small for cavity vibrations with a sufficiently small amplitude.

Being derived very generally, the method is applicable for different kinds of boundary
conditions of the form (4) provided that the spectrum {�n} contains no zero mode, i.e.
�n > 0 ∀n and can easily be extended to massive scalar fields by substituting for the frequency
�n the corresponding expression for a massive scalar field, i.e. �n =

√
(nπ)2/l2 + m2 where m

is the mass. Furthermore, the generalization to higher dimensional cavities is straightforward.
This makes it possible to study the dynamical Casimir effect for a variety of possible interesting
scenarios where less or even nothing is known analytically. As already mentioned in the
introduction, TE-mode photon creation in a three-dimensional rectangular cavity [23] can be
studied with the same method as well because it can be related to the production of massive
scalar particles in a one-dimensional cavity [43]. However, more complicated boundary
conditions than (4) appearing for example when studying TM-mode photons [27] cannot be
treated within this approach.
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Appendix A. Derivation of ξ(m)
n and η(m)

n

The auxiliary functions ξ (m)
n (t) and η(m)

n (t) (equations (19) and (20)) can be introduced
in the following way: define an operator b̂n(t) via b̂n(t) := Û †(t, 0)ânÛ (t, 0) with ân

being the annihilation operator corresponding to the initial state (equation (6)), i.e. ân =
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(1/
√

2)
[√

�0
nq̂n(0) +

(
i/

√
�0

n

)
p̂n(0)

]
. Hence b̂n(t) = (1/

√
2)

[√
�0

nÛ
†(t, 0)q̂n(0)Û(t, 0) +(

i/
√

�0
n

)
Û †(t, 0)p̂n(0)Û(t, 0)

]
. By using equations (13) and (14) one derives

b̂n(t � 0) =
∑
m

1

2

√
�0

n

�0
m

[
ξ (m)
n (t)âm + η(m)∗

n (t)â†
m

]
(A.1)

with ξ (m)
n (t) and η(m)

n (t) defined in equations (19) and (20). Note that this definition of the
time evolution for b̂n(t) does not account for an explicit time-dependence of b̂n(t). Therefore,
in general, no meaningful notion of particles may be assigned to the operator b̂n(t). This
manifests itself in the relation between the operator Ân corresponding to the particle notion
for t � t1 (equation (7)) and the operators b̂n(t1), b̂

†
n(t1) given by

Ân =
√

�1
n

�0
n

[

+

n(t1)b̂n(t1) + 
−
n (t1)b̂

†
n(t1)

]
(A.2)

with 
±
n (t) defined in (23). Equation (A.2) follows directly from equation (9) with (21), (22)

and (A.1). For motions ending at t = t1 with l(t1) �= l0 the operator b̂n(t) has not evolved into
the operator Ân associated with the correct particle notion after the dynamics. However, if
l(t1) = l0, for example when t1 is a multiple of the period of boundary vibrations, Ân = b̂n(t1).

Appendix B. The system for A(m)
n and B(m)

n

Taking the stopping time t1 in (16) and (17) to be a continuous variable one derives the
following system of coupled differential equations for Amn and Bmn:

Ȧmn = −i�nAmn + �nBmn +
∑

k

[
K−

nkAmk − K+
nkBmk

]
(B.1)

Ḃmn = −i�nBmn + �nAmn +
∑

k

[
K−

nkBmk − K+
nkAmk

]
(B.2)

with

�n(t) = 1

2

�̇n(t)

�n(t)
K±

nk(t) = 1

2

[√
�k(t)

�n(t)
Mnk(t) ±

√
�n(t)

�k(t)
Mkn(t)

]
. (B.3)

Appendix C. Numerics

The numerical simulations have been performed by using a Runge–Kutta Prince–Dormand
method (rk8pd) based on source code provided by the GNU Scientific Library (GSL) [44].
In the table in figure 4, we show the numerical values for the total number of particles
N(t) created in a cavity subject to sinusoidal oscillations of the form (28) with frequency
ω = 3π (cf figures 1 and 2(a)) for two times t = 249.5 and t = 250.0 and cut-off parameters
kmax = 20, 30, 40, 50 and 60. The plot in figure 4 shows the diagonal part of the first of
the Bogoliubov relations (10) dk = 1 − ∑

m(|Amk|2 − |Bmk|2) = 0 for k = 1, . . . , 10 and
51, . . . , 60 computed from the solutions of the simulation with kmax = 60. The absolute and
relative errors for the rk8pd routine in the simulations have been set to 10−8.

The plot demonstrates that for those settings dk = 0 is satisfied by the numerical solutions
up to ∼3 × 10−5 at the end of the integration range. Thereby the accuracy is better for the
lowest modes k = 1, . . . , 10 than for the modes k = 51, . . . , 60. This is partly due to the fact
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kmax N(t = 249.5) N(t = 250.0)

20 0.5799007 0.5823052

30 0.5798943 0.5822980

40 0.5798951 0.5822983

50 0.5798956 0.5822984

60 0.5798959 0.5822984
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Figure 4. Left: plot showing the numerically evaluated diagonal part of the first of the Bogoliubov
relations (10) dk = 1 − ∑

m(|Amk |2 − |Bmk |2) for the lowest frequencies k = 1, . . . , 10 as well as
k = 51, . . . , 60 corresponding to the simulation with cut-off kmax = 60. Right: table showing the
numerical values of the total particle number at times t = 249.5 and t = 250 obtained for ω = 3π

and kmax = 20, 30, 40, 50 and 60.

that the higher modes are more affected by the truncation of the infinite system at kmax = 60
than the lowest modes. The accuracy for the intermediate modes k = 11, . . . , 50 lies in
between the two ‘bands’ visible in the plot. The remaining Bogoliubov relations are satisfied
with at least the same accuracy demonstrating that the numerical errors are small compared to
the values of the particle numbers itself. We consider dk as the determining measure for the
accuracy of the numerical calculations which can easily be enhanced further by increasing the
preset accuracy of the integration routine.

The numerical values for N(t = 249.5) and N(t = 250.0) summarized in the table in
figure 4 are shown with seven decimal places. Varying the cut-off between kmax = 30 and
60 both values change only in the last two of the seven decimal places shown and therefore
the variation in N(t) when changing kmax is smaller than 10−5, i.e. smaller than the numerical
error in the Bogoliubov relations. This demonstrates that the convergence of the numerical
values for N(t) is sufficiently good. Furthermore, because l̇(t = 250) = 3πε (l0 = 1) we can
conclude that spurious effects caused by discontinuities in the velocity (matching problem)
are indeed negligibly small for the parameters considered (ε � 1).
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[30] Schaller G, Schützhold R, Plunien G and Soff G 2002 Phys. Lett. A 297 81
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